Kinetics and Mechanisms of Nucleophilic Displacements with Heterocycles as Leaving Groups. Part 13.1 Penta- and Nona-cyclic Derivatives ${ }^{2}$

Alan R. Katritzky * and Charles M. Marson
Department of Chemistry, University of Florida, Gainesville, Florida 32611, U.S.A.

Abstract

Steric acceleration by α, β-polycyclic fusion in pyridine leaving groups is quantitatively assessed. Constraining phenyl rings in pyridines to near planarity by ethano bridges in phenanthro [2,3-h]quinolinium (39) is less effective in terms of $S_{N} 2$ displacement reactions by a factor of ca. 20 than in the less sterically hindered benzoquinolinium (2b). However, the corresponding rate for diphenanthro $\left[2,3-c ; 3^{\prime}, 2^{\prime}-h\right]$ acridinium (43) is almost the same as that for the dibenzoacridinium (3b) systems. The pendant phenyl groups in systems (12) and (19) decrease $S_{N} 2$ rates compared with (2a) and (3a) by factors of ca. 2 and ca. 4 , respectively. Neither of these structural modifications significantly increases $S_{N} 1$ rates.

Primary amines have been transformed ${ }^{3}$ into a wide range of functionality in a synthetically useful two-step sequence involving nucleophilic attack on isolable pyridinium intermediates.

Whereas [2,3-a]acenaphtho-fusion in pyridinium salts uniformly decreases ${ }^{4}$ the second-order rate constant k_{2}, compared with a 2-phenyl substituent for transformation B, on account of steric effects, dihydronaphtho-fusion of the type shown in salts (2) and (3) produces marked increases in k_{2} values ${ }^{4}$ because of relief of steric strain at the reaction site ($\mathrm{N}^{-} \mathrm{C}_{\alpha}$). Thus, constraint of the 2- and 6-phenyl groups in salt (1) to near planarity by the introduction of one (2) or two (3) bridging ethano-groups increases the $S_{\mathrm{N}} 2$ rates for transfer of N-benzyl to piperidine by factors of 65 and 900 , respectively, ${ }^{5}$ and allows preparative work to be carried out under relatively mild conditions. ${ }^{6,7}$

Our continuing search for still better leaving groups has involved the study of various types of monocyclic pyridinium salts ${ }^{8.9}$ as well as pyridinium salts fused with heterocyclic rings. ${ }^{10}$ In this context, we have now studied the effects of extended benzannelation and pendant phenyl groups on nucleophilic displacement rates.

5,6-Dihydro-2,4-diphenylbenzo[h]quinolinium Series.-Friedel-Crafts succinoylation of biphenyl (4) afforded, as reported, ${ }^{11}$ keto-acid (5). Rather than using a Clemmensen reduction, ${ }^{11}$ acid (5) was best reduced to acid (6) by the Huang-Minlon reduction. ${ }^{12}$ Ring-closure of acid (6) via the acid chloride afforded naphthalenone (7) as reported. ${ }^{11}$ The latter and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ condensed with benzylideneacetophenone and benzylidenepinacolone to afford novel chromenylium salts (8) and (9), respectively; those in turn were converted
 treatment with ethereal ammonia. Chromenylium salt (8) gave quinolinium salts (12) and (13) upon treatment with benzylamine and n-butylamine respectively, at $20^{\circ} \mathrm{C}$. The large k_{1} values induced by an α-t-butyl group ${ }^{5}$ made it desirable to prepare pyridinium salt (14); however, treatment of chromenylium salt (9) with n-butylamine afforded only impure samples of salt (14), invariably contaminated with pyridine (11).

Tetrahydro-2,7,12-triphenyldibenz[$\mathrm{c}, \mathrm{h}]$ acridinium Series.Naphthalenone (7) underwent aldol condensation with benzaldehyde to afford ketone (15), as reported. ${ }^{13}$ Condensation of ketones (7) and (15) with HClO_{4} and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ led respectively to xanthylium salts (16) and (17), dibenzacridine (18) being prepared from the latter and ammonium hydroxide.

Scheme 2.

Xanthylium salt (17) afforded acridinium salt (19) with benzylamine, and with p-anisidine, xanthylium salt (16) gave acridinium salt (20). While $5,6,8,9$-tetrahydro-7-phenyldibenz $[c, h]$ acridinium salts undergo slow stilbene-like photocyclisation, ${ }^{14}$ this $2,7,12$-triphenyl analogue (20) was recovered unchanged upon irradiation (300 nm) in MeOH at $50^{\circ} \mathrm{C}$.

Synthesis of $\left[7,7^{\prime}\right.$-Binaphthalene $]-1(2 \mathrm{H}), 1^{\prime}\left(2 \mathrm{H}^{\prime}\right)$-dione (25). -Double succinoylation of biphenyl with β-methoxycarbonylpropionyl chloride afforded exclusively diester (21) in a modification of the reported work. ${ }^{15}$ The extensive tarring that occurred could not be avoided by conducting the reaction at lower temperatures, since the monosuccinoylated ester (22) was the sole product. Saponification ${ }^{15}$ of keto-ester (21) to give keto-acid (23) and Wolff-Kishner reduction ${ }^{15}$ (HuangMinlon modification) of the latter afforded the diacid (24) as reported. While diacid (24) was recovered unchanged upon

(4)

(5) $x=0$
(6) $X=H_{2}$

(10) $R=P h, Z=N$
(11) $R=B u^{t}, Z=N$
(8) $\mathrm{R}=\mathrm{Ph}$
(12) $R=P h, Z=\stackrel{+}{N} C H_{2} P h$
(13) $R=P h, Z=\stackrel{+}{N} B u^{n} \quad \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$

(14) $R=B u^{t}, Z=+$| N | $B u^{n}$ |
| :---: | :---: |

(9) $R=B u^{t}$

Scheme 3. Reagents: i, polyphosphoric acid

(18) $Z=N$
(19) $\mathrm{Z}=\stackrel{+}{\mathrm{N}} \mathrm{CH}_{2} \mathrm{Ph} \quad \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$
(20) $Z=\stackrel{+}{N}-p-\mathrm{C}_{6} \mathrm{H}_{4} . \mathrm{OMe}^{\mathrm{O}} \mathrm{ClO}_{4}^{-}$

Scheme 4. Reagents: i, (7); $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}-\mathrm{HClO}_{4}$
treatment with anhydrous hydrogen fluoride, extensive polymerisation occurred when cyclisation of (24) via the acid chloride was attempted. Polyphosphoric acid, often the reagent of choice for ring-closure to tetralones, ${ }^{16}$ effected cyclisation of diacid (24) to the novel binaphthalenedione (25); the necessarily unambiguous cyclisation was an important aspect of the synthetic route.

Attempts to prepare Heteromacrocycles.-In connection with work towards a synthesis of heterokekulenes, ${ }^{17}$ macro-

(21) $\mathrm{R}=\mathrm{CO} \cdot \mathrm{CH}_{2} \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}, \mathrm{X}=\mathrm{O}$
(22) $R=H, X=O$

(23) $x=0$
(24) $X=H_{2}$

Scheme 5. Reagents: i, NaOH ; ii, $\left(\mathrm{HOCH}_{2}\right)_{2}-\mathrm{Na}-\mathrm{N}_{2} \mathrm{H}_{4}$; iii, polyphosphoric acid
cycles such as (32) were attempted. Key intermediates were synthesised as follows. Condensation of dione (25) with benzaldehyde afforded exclusively the bisbenzylidene derivative (26), but this failed to yield salt (29) with dione (25) and a variety of acids, a carbonyl band being present in the resulting mixtures ($v_{\max } 1660 \mathrm{~cm}^{-1}$). The dioxime (28), obtained by treatment of dione (25) with hydroxylamine, failed to give pyridine (31) when treated with dione (26) and $\mathrm{NH}_{4} \mathrm{OAc}$ $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ in a modified Hantzsch synthesis. ${ }^{18}$ Direct fusion also failed. The reactive dialdehyde (27) was prepared by a Vilsmeier-Haack reaction on dione (25), but these two compounds failed to condense to give salt (30) with acids, under a variety of conditions, carbonyl components always remaining ($v_{\text {max. }} 1670 \mathrm{~cm}^{-1}$). The failure of all the above condensations was attributed to the rotational energy barrier of the biphenyl rings, amounting to $c a .18 \mathrm{kcal} \mathrm{mol}^{-1}$ of (30), which must be overcome; when held roughly coplanar by ethano-bridges across the $6,6^{\prime}$-positions, those analogues of compounds (25) and (27) condense readily to afford a macrocyclic bispyrylium salt. ${ }^{17}$

Azoniadibenz[a,j]anthracene Series.-The comparison of kinetic results of pyridinium salt (13) with salt (39), in which the 9 -phenyl ring in the former is ' fixed' by an ethano bridge, was of considerable interest. Succinoylation of 9,10 -dihydrophenanthrene with succinic anhydride afforded, as reported, ${ }^{19}$ keto acid (34); as we have described elsewhere ${ }^{17}$ this was best reduced to acid (35) by the Lock modification ${ }^{20}$ of the WolffKishner reduction. Cyclisation of acid (35) in HF afforded, as published, ${ }^{21}$ benz $[a]$ anthracen-11(10H)-one (36), which condensed with chalcone, in the presence of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, to give azoniadibenz $[a, j]$ anthracene salt (37). This was converted by ammonium hydroxide into pyridine (38) and by n-butylamine into pyridinium salt (39).

Scheme 6. Reagents: i, $\mathrm{PhCHO}-\mathrm{KOEt}$; ii, $\mathrm{POCl}_{3}-\mathrm{DMF}$; iii, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$

(38) $Z=N$
(39) $\mathrm{Z}=\stackrel{+}{\mathrm{N}} \mathrm{Bu}^{\mathrm{n}} \quad \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$

Scheme 7. Reagents: i, $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{O}-\mathrm{AlCl}_{3}-\mathrm{PhNO}_{2}$; ii, $\mathrm{N}_{2} \mathrm{H}_{4}-\mathrm{KOH}$; iii, HF ; iv, $\mathrm{PhCH}=\mathrm{CHCOPh}-\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$

Scheme 8. Reagents: i, (36)- $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$

Table 1. Pseudo-first-order rate constants for the reaction of N-substituted pyridinium salts with piperidine in chlorobenzene

Compound	$t /{ }^{\circ} \mathrm{C}$	$10^{5} k_{\text {obs }} / \mathrm{s}^{-1}$	$\begin{aligned} & 10^{3}[\mathrm{Nu}] / \\ & \mathrm{mol} \mathrm{l}^{-1} \end{aligned}$
(12) ${ }^{\text {a }}$	100.0	49.5	3.20
		82.4	6.40
		109.5	9.60
$(19){ }^{\text {b }}$	60.0	73.3	1.60
		111.0	3.20
		213.0	6.40
		261.0	9.60
		353.0	13.0
(39) ${ }^{c}$	100.0	1.98	320
		2.58	480
		3.15	640
$(43){ }^{\text {d }}$	100.0	4.0	14.4
		7.0	28.8
		13.4	57.6

${ }^{a}[(12)] 3.20 \times 10^{-5} \mathrm{~mol} \mathrm{l}^{-1} ; \varepsilon_{1} 13000, \varepsilon_{2} 1000, \lambda 360 \mathrm{~nm} .{ }^{b}[(19)]$ $3.20 \times 10^{-5} \mathrm{~mol} \mathrm{l}^{-1} ; \varepsilon_{1} 12000, \varepsilon_{2} 600, \lambda 400 \mathrm{~nm} .{ }^{c}[(39)] 1.20 \times 10^{-3}$ $\mathrm{mol} \mathrm{l}^{-1} ; \varepsilon_{1} 12000, \varepsilon_{2} 0, \lambda 384 \mathrm{~nm} .{ }^{d}[(43)] 9.60 \times 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}$; $\varepsilon_{1} 17000, \varepsilon_{2} 0, \lambda 421 \mathrm{~nm}$.

Azoniabenzo[a]phenanthro[2,3-o]pentaphene
Series.-A further comparison of the kinetics of pyridinium salts (19) and (43) was desired. Ketone (36) afforded ketone (40) upon treatment with benzaldehyde as previously described. ${ }^{22}$ Condensation of ketones (36) and (40) with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ gave the monocyclic salt (41), which afforded pyridine (42) upon treatment with ammonium hydroxide. Salt (41) was converted into the required pyridinium salt (43) when treated with n-butylamine.

Kinetic Rates for Reactions of Pyridinium Salts with Piperidine.-Kinetic rates were determined by the previously reported method of reaction under pseudo-first-order conditions with piperidine in chlorobenzene solvent (Table 1). In

Table 2. First- and second-order rate constants for the reactions of N-substituted pyridinium salts with piperidine in chlorobenzene

						$10^{3} k_{1}{ }^{\text {d }}$
Compound	$t /{ }^{\circ} \mathrm{C}$	N^{a}	$r^{\text {b }}$	$10^{3} k_{2}{ }^{c} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$10^{6} k_{1}{ }^{9} / \mathrm{s}^{-1}$	$\overline{k_{2}+10 k_{1}}$
(12)	100.0	3	0.998	93.8 ± 33	(21 $\pm 23)$	<4
(19)	60.0	5	0.995	242 ± 33	38 ± 26	<3
(39)	100.0	3	0.999	0.037 ± 0.004	8 ± 2	68
(43)	100.0	3	0.999	2.2 ± 0.2	(8 ± 7)	<7

${ }^{a}$ Number of runs. ${ }^{b}$ Correlation coefficient. ${ }^{c} 90 \%$ Confidence limits. ${ }^{4}$ Percentage reaction by $S_{\mathrm{N}} 1$ route at [piperidine] $10^{-1} \mathrm{~mol} \mathrm{l}^{-1}$.

Table 3. Kinetic rate comparisons for reactions with piperidine in chlorobenzene at $100{ }^{\circ} \mathrm{C}$ of N-benzyl and N-n-butyl derivatives for di-hydronaphtho-fused (A), 9-phenyldihydronaphtho-fused (B), and tetrahydrobenz[a]anthra-fused series (C)

(A)

R^{\prime}R	$10^{5} k_{1} / \mathrm{s}^{-1}$			
	N-n-Butyl		N-Benzyl	
	Ph		Ph	
R	H	Symmetrical system ${ }^{b}$	H	Symmetrical system ${ }^{\text {b }}$
A	$\leqslant 3$	$\leqslant 10$	$\leqslant 2$	$\leqslant 1^{a}$
B			$\leqslant 4$	$\leqslant 6^{*}$
C	0.8	$\leqslant 2$		

R^{\prime}R	$10^{5} k_{1} / \mathrm{s}^{-1}$			
	N-n-Butyl		N-Benzyl	
	Ph		Ph	
R	H	Symmetrical system ${ }^{b}$	H	Symmetrical system ${ }^{\text {b }}$
A	$\leqslant 3$	$\leqslant 10$	$\leqslant 2$	$\leqslant 1^{a}$
B			$\leqslant 4$	$\leqslant 6^{*}$
C	0.8	$\leqslant 2$		

$0^{5} k_{1} / \mathrm{s}^{-1}$

$\leqslant 6^{*}$

(C)
(B)

$10^{3} k_{2} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$			
N-n-Butyl		$\underbrace{N \text {-Benzyl }}$	
Ph		Ph	
H	Symmetrical system ${ }^{\text {b }}$	H	Symmetrical system ${ }^{\text {b }}$
0.69	2.4	341	511*
		94	$242 *$

2.2

Values starred ${ }^{*}$ at $60^{\circ} \mathrm{C}$; others at $100^{\circ} \mathrm{C}$. ${ }^{a}$ Only $30^{\circ} \mathrm{C}$ value available; $k_{2}(0.4 \pm 0.8) \times 10^{-5} 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1} .{ }^{b}$ Salts (3), (19), and (43) for A-C, respectively.
all cases plots of $k_{\text {obs. }}$ versus [piperidine] gave straight lines from the slopes of which the second-order rate constants k_{2} were calculated (Table 2). The intercepts represent the first order component k_{1} : except for (39) these were not significantly different from zero (Table 2).

In Table 3, rate comparisons are made for the presently examined compounds and the tri- and penta-cyclic derivatives (2) and (3). As regards the $S_{\mathrm{N}} 2$ second-order rates, the comparisons of Table 3 show that both the simple pendant phenyl group and the fused phenanthro-system reduces the rates relative to the simple tri- or penta-cyclic analogues. Curiously the reduction in rate is less in the pentacyclic series than in the tricyclic. The reduction is greatest for the phenanthro-system in the tricyclic series and least for the phenanthro-system in the pentacyclic series. Although the detailed rate variations cannot at present be rationalised, it appears that the greater size of the substituent is responsible for hindering the approach of the nucleophile.

As regards the $S_{\mathrm{N}} 1$ rates, for most of the compounds only limiting rates are available. All that can be concluded is that neither the pendant phenyl groups, nor the fused phenanthrosystems greatly increase the $S_{\mathrm{N}} 1$ rates.

Experimental

M.p.s are uncorrected and were measured on a Reichert hot stage microscope. I.r. and mass spectra were recorded using a

Perkin-Elmer 238B grating i.r. spectrometer and an RMU-6E Hitachi-Perkin-Elmer spectrometer, respectively. N.m.r. spectra were recorded on Varian EM $360 \mathrm{~L}\left({ }^{1} \mathrm{H} ; 60 \mathrm{MHz}\right)$ and JNM-FX $100\left({ }^{13} \mathrm{C} ; 25.05 \mathrm{MHz}\right)$ instruments, using SiMe_{4} as internal standard.

The following compounds were prepared using literature methods: 4-oxo-4-biphenyl-4-ylbutanoic acid, m.p. 182-185 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{11} 183^{\circ} \mathrm{C}$); 3,4-dihydro-7-phenylnaphthalen-1(2H)-one, m.p. $67-69^{\circ} \mathrm{C}$ (lit., ${ }^{11} 70^{\circ} \mathrm{C}$); 3,4-dihydro-7-phenyl-2-(phenyl-methylene)naphthalen-1 $(2 \mathrm{H})$-one, m.p. $144-147^{\circ} \mathrm{C}$ (lit., ${ }^{13}$ $144{ }^{\circ} \mathrm{C}$); 3-methoxycarbonylpropionyl chloride, b.p. 89-90 ${ }^{\circ} \mathrm{C}$ at 15 mmHg (lit. ${ }^{23} 89-90{ }^{\circ} \mathrm{C}$ at 15 mmHg) ; 4,4'-bis-(3-carboxy-1-oxopropyl)biphenyl, m.p. $300-302{ }^{\circ} \mathrm{C}$ (lit., ${ }^{15} 303$ ${ }^{\circ} \mathrm{C}$); 4,4'-bis-(3-carboxypropyl)biphenyl, m.p. $182-184{ }^{\circ} \mathrm{C}$ (lit., ${ }^{15} 185{ }^{\circ} \mathrm{C}$); 4-(9,10-dihydrophenanthren-2-yl)-4-oxobutanoic acid, m.p. $157-158{ }^{\circ} \mathrm{C}$ (lit., ${ }^{19} 157-158{ }^{\circ} \mathrm{C}$); $5,6,7,8-$ tetrahydrobenz[a]anthracen-11(10H)-one, m.p. $89.5-90.5^{\circ} \mathrm{C}$, remelting at $96.0-96.5^{\circ} \mathrm{C}$ (lit., ${ }^{21} 89.5-90.5^{\circ} \mathrm{C}$, remelting at $96.5-97.5^{\circ} \mathrm{C}$); 4-(9,10-dihydrophenanthren-2-yl(butanoic acid, ${ }^{17}$ m.p. $91-92{ }^{\circ} \mathrm{C}$ (lit., ${ }^{24} 92-92.5^{\circ} \mathrm{C}$); 5,6,8,9-tetrahydro-10-(phenylmethylene)benz[a]anthracen-11(10H)-one, m.p. $159-160{ }^{\circ} \mathrm{C}$ (lit.,$^{22} 161^{\circ} \mathrm{C}$).

4-Biphenyl-4-ylbutanoic Acid (6).-A Huang-Minlon procedure ${ }^{25}$ was adapted as follows. The oxo-acid (5) (16.3 g , $0.068 \mathrm{~mol})$, hydrazine hydrate ($7.0 \mathrm{~g}, 0.14 \mathrm{~mol}$), ethylene glycol $(200 \mathrm{ml})$, and $\mathrm{KOH}(16.3 \mathrm{~g}, 0.29 \mathrm{~mol})$ were heated under
reflux for 1 h . After distilling the solution until the temperature rose to $190^{\circ} \mathrm{C}$, the residue was refluxed a further 3 h using an air condenser. Addition of water (600 ml) and neutralisation of the solution with $\mathrm{HCl}(6 \mathrm{~N})$ until just acid to litmus, gave a precipitate which was filtered, and the damp cake dissolved in toluene (200 ml) at $70{ }^{\circ} \mathrm{C}$; extraction with $\mathrm{KOH}(1.5 \mathrm{~N} ; 2 \times$ $100 \mathrm{ml})$, acidification of the aqueous layer with $\mathrm{HCl}(6 \mathrm{~N})$, filtration and washing with water (500 ml) gave acid (6) (13.8 g , 90%, prisms from AcOH, m.p. $116-117^{\circ} \mathrm{C}\left(\right.$ lit., $^{11} 118{ }^{\circ} \mathrm{C}$).

5,6-Dihydro-2,4,9-triphenylbenzo[h]chromenylium Trifluoromethanesulphonate (8).-Ketone (7) ($0.22 \mathrm{~g}, 1 \mathrm{mmol}$), benzylideneacetophenone ($0.31 \mathrm{~g}, 1.5 \mathrm{mmol}$), and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.75$ $\mathrm{g}, 5 \mathrm{mmol}$) were heated at $100^{\circ} \mathrm{C}$ for 2 h . Trituration of the gum with $\mathrm{EtO}_{2}(50 \mathrm{ml})$ and standing (1 h) afforded chromenylium salt (8) $(0.38 \mathrm{~g}, 68 \%$), orange prisms from anisole-diisopropyl ether, m.p. $224-226^{\circ} \mathrm{C}$ (Found: C, 68.5 ; H, 4.1. $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 68.6 ; \mathrm{H}, 4.1 \%$); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right)$ 1615,1600 , and $1260 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.3(1 \mathrm{H}$, s), $8.2(3 \mathrm{H}, \mathrm{s}), 7.6(15 \mathrm{H}, \mathrm{m})$, and $3.1(4 \mathrm{H}, \mathrm{s})$.

2-t-Butyl-5,6-dihydro-4,9-diphenylbenzo[h$]$ chromenylium

 Trifluoromethanesulphonate (9).—Ketone (7) ($0.22 \mathrm{~g}, 1 \mathrm{mmol}$), benzylidenepinacolone ($0.28 \mathrm{~g}, 1.5 \mathrm{mmol}$), and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.75$ $\mathrm{g}, 5 \mathrm{mmol}$) were heated at $100^{\circ} \mathrm{C}$ for 5 h . Trituration of the gum with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ and standing (1 h) afforded chromenylium salt (9) ($0.35 \mathrm{~g}, 65 \%$), yellow prisms from anisole-diisopropyl ether, m.p. $242-245{ }^{\circ} \mathrm{C}$ (Found: C, 66.2; H, 5.0. $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 66.6 ; \mathrm{H}, 5.0 \%$) ; $\mathrm{v}_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1620$, 1605 , and $1260 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.2(1 \mathrm{H}, \mathrm{s}), 7.6(13 \mathrm{H}, \mathrm{m})$, $3.1(4 \mathrm{H}, \mathrm{s})$, and $1.6(9 \mathrm{H}, \mathrm{s})$.5,6-Dihydro-2,4,9-triphenylbenzo[h]quinoline (10).-Chromenylium salt (8) ($0.30 \mathrm{~g}, 0.53 \mathrm{mmol}$) was stirred in $\mathrm{Et}_{2} \mathrm{O}$ (5 ml). Aqueous $\mathrm{NH}_{3}(d 0.88 ; 4 \mathrm{mmol}$) was added dropwise, followed after 2 h by $\mathrm{AcOH}(0.48 \mathrm{~g}, 8 \mathrm{mmol})$. The mixture was stirred for 16 h , solvent allowed to evaporate at $25^{\circ} \mathrm{C}$, and water (10 ml) added. After filtration and drying $\left(80^{\circ} \mathrm{C}\right.$), the residue $(0.16 \mathrm{~g}, 71 \%)$ was chromatographed on neutral alumina ($15 \mathrm{~g} ; 10 \%$ EtOAc-light petroleum) to give, after removal of solvent, quinoline (10) as prisms, m.p. $217-219^{\circ} \mathrm{C}$ (Found: C, 90.8; H, 5.7; N, 3.4. $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}$ requires C, 90.9; H, 5.7; N , $3.4 \%) ; v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 2950,2930,1585,765$, and $760 \mathrm{~cm}^{-1} ; \delta$ $\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.6(1 \mathrm{H}, \mathrm{s}), 7.4(18 \mathrm{H}, \mathrm{m})$, and $2.8(4 \mathrm{H}, \mathrm{s})$.

2-t-Butyl-5,6-dihydro-4,9-diphenylbenzo[h]quinoline (11).Chromenylium salt (9) ($0.40 \mathrm{~g}, 0.74 \mathrm{mmol}$) was stirred in $\mathrm{Et}_{2} \mathrm{O}$ (5 ml) and aqueous $\mathrm{NH}_{3}(d 0.88 ; 4 \mathrm{mmol}$) added dropwise followed after 2 h by $\mathrm{AcOH}(0.48 \mathrm{~g}, 8 \mathrm{mmol})$. The mixture was stirred for 16 h , solvent allowed to evaporate at $25^{\circ} \mathrm{C}$, and water (10 ml) added. Filtration and drying $\left(80^{\circ} \mathrm{C}\right)$ gave the product (11) $(0.25 \mathrm{~g}, 88 \%)$, which was chromatographed on neutral alumina as for quinoline (10), to give quinoline (11), needles, m.p. $163-164{ }^{\circ} \mathrm{C}$ (Found: C, 89.3; H, 7.0; N, 3.6. $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}$ requires $\left.\mathrm{C}, 89.4 ; \mathrm{H}, 7.0 ; \mathrm{N}, 3.6 \%\right) ; v_{\text {max }}\left(\mathrm{CHBr}_{3}\right)$ $2960-2840,1585,770$, and $760 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.7(1 \mathrm{H}, \mathrm{s})$, $7.3(13 \mathrm{H}, \mathrm{m}), 2.8(4 \mathrm{H}, \mathrm{s})$, and $1.4(9 \mathrm{H}, \mathrm{s})$.

1-Benzyl-5,6-dihydro-2,4,9-triphenylbenzo[h$]$ quinolinium

Trifluoromethanesulphonate (12).-Chromenylium salt (8) $(0.28 \mathrm{~g}, 0.5 \mathrm{mmol})$ was stirred in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}(51 \mathrm{mg}$, 0.5 mmol). Benzylamine ($54 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added dropwise at $20^{\circ} \mathrm{C}$, followed after 1 h by $\mathrm{AcOH}(0.15 \mathrm{~g}, 2.5 \mathrm{mmol})$. The mixture was stirred for 16 h , filtered, and the crude product recrystallised to give quinolinium salt (12) ($0.23 \mathrm{~g}, 70 \%$), prisms (from ethanol-di-isopropyl ether), m.p. $169-170{ }^{\circ} \mathrm{C}$ (Found: C, 71.7; H, 4.7; N, 2.1. $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ requires C ;
$72.1 ; \mathrm{H}, 4.7 ; \mathrm{N}, 2.2 \%$) ; $v_{\text {max }}\left(\mathrm{CHBr}_{3}\right) 1610,1600$, and 1265 $\mathrm{cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.3(1 \mathrm{H}, \mathrm{s}), 7.4(20 \mathrm{H}, \mathrm{m}), 6.5(3 \mathrm{H}, \mathrm{m}), 6.1$ ($2 \mathrm{H}, \mathrm{s}$), and $2.9(4 \mathrm{H}, \mathrm{s})$.

1-n-Butyl-5,6-dihydro-2,4,9-triphenylbenzo[h]quinolinium Triftuoromethanesulphonate (13).-Chromenylium salt (8) $(0.56 \mathrm{~g}, 1 \mathrm{mmol})$ was stirred in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.10 \mathrm{~g}$, 1 mmol). n-Butylamine ($73 \mathrm{mg}, 1 \mathrm{mmol}$) was added dropwise at $20^{\circ} \mathrm{C}$, followed after 1 h by $\mathrm{AcOH}(0.30 \mathrm{~g}, 5 \mathrm{mmol})$. The mixture was stirred for 16 h , solvent allowed to evaporate at $25^{\circ} \mathrm{C}$, and water (10 ml) added. After filtration and drying $\left(20^{\circ} \mathrm{C}\right.$ and 14 mmHg) the residue was chromatographed on neutral alumina (30 g ; EtOAc followed by $\mathrm{Me}_{2} \mathrm{CO}$ for pyridinium fraction) to give, after removal of solvent, quinolinium salt (13) ($0.39 \mathrm{~g}, 63 \%$), prisms, m.p. $227-228{ }^{\circ} \mathrm{C}$ (Found: C, 70.2; H, 5.3; N, 2.3. $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 70.2 ; H, 5.2; N, 2.3%); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 2960,2930,2870$, 1600 , and $1265 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.2(1 \mathrm{H}, \mathrm{s}), 7.4(18 \mathrm{H}, \mathrm{m})$, $4.9(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 2.9(4 \mathrm{H}, \mathrm{s}), 1.4(2 \mathrm{H}, \mathrm{m}), 0.8(2 \mathrm{H}, \mathrm{m})$, and $0.5(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$.

5,6,8,9-Tetrahydro-2,7,12-triphenyldibenzo $[\mathrm{c}, \mathrm{h}]$ xanthylium Perchlorate (16).-Ketone (7) ($0.22 \mathrm{~g}, 1 \mathrm{mmol}$), benzylideneketone (15) ($0.31 \mathrm{~g}, 1 \mathrm{mmol}$), and $\mathrm{HClO}_{4}(70 \%, 0.20 \mathrm{ml})$ were heated at $100{ }^{\circ} \mathrm{C}$ for 40 min . Trituration of the gum with $\mathrm{Et}_{2} \mathrm{O}(5 \times 10 \mathrm{ml})$ and filtration afforded xanthylium perchlorate (16) $(0.23 \mathrm{~g}, 38 \%)$, as orange prisms, m.p. $>300^{\circ} \mathrm{C}$ (Found: C, $76.3 ; \mathrm{H}, 4.8 . \mathrm{C}_{39} \mathrm{H}_{29} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 76.4 ; \mathrm{H}, 4.8 \%$); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1620$ and $1085 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.4$ $(2 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}), 7.9(2 \mathrm{H}, \mathrm{dd}, J 2$ and 7 Hz$), 7.5(17 \mathrm{H}, \mathrm{m})$, and $3.1(8 \mathrm{H}, \mathrm{s})$.

5,6,8,9-Tetrahydro-2,7,12-triphenyldibenzo $[\mathrm{c}, \mathrm{h}]$ xanthylium Trifluoromethanesulphonate (17).-Ketone (7) (0.11 g, 0.5 $\mathrm{mmol})$, benzylidene-ketone (15) ($0.16 \mathrm{~g}, 0.5 \mathrm{mmol}$) and $\mathrm{CF}_{3}{ }^{-}$ $\mathrm{SO}_{3} \mathrm{H}(0.75 \mathrm{~g}, 5 \mathrm{mmol})$ were heated at $100{ }^{\circ} \mathrm{C}$ for 4 h . Trituration of the gum with $\mathrm{Et}_{2} \mathrm{O}(5 \times 10 \mathrm{ml})$ and filtration afforded xanthylium trifluoromethanesulphonate (17) ($0.12 \mathrm{~g}, 33 \%$), orange prisms (from $\mathrm{AcOH}-\mathrm{MeNO}_{2}-\mathrm{Pr}_{2}{ }_{2} \mathrm{O}$ 4:1:4), m.p. 292-294 ${ }^{\circ} \mathrm{C}$ (Found: C, 72.2; H, 4.4; S, 4.6. $\mathrm{C}_{40} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 72.5 ; \mathrm{H}, 4.4 ; \mathrm{S}, 4.8 \%$); $\mathrm{v}_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1620$ and $1270 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.4(2 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}), 7.5$ $(19 \mathrm{H}, \mathrm{m})$, and $3.0(8 \mathrm{H}, \mathrm{m})$.

5,6,8,9-Tetrahydro-2,7,12-triphenyldibenz[c,h]acridine (18). -Xanthylium salt (17) $(0.20 \mathrm{~g}, 0.3 \mathrm{mmol})$ was stirred in $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml} ; 1: 1 \mathrm{v} / \mathrm{v})$ and aqueous $\mathrm{NH}_{3}(d 0.88 ; 2$ $\mathrm{mmol})$ added dropwise followed after 2 h by $\mathrm{AcOH}(0.24 \mathrm{~g}$, 4 mmol). The mixture was stirred for 16 h , solvent allowed to evaporate at $25^{\circ} \mathrm{C}$, and water (10 ml) added. Filtration and drying ($80{ }^{\circ} \mathrm{C}$) gave a brown product which was chromatographed on alumina (30 g ; EtOAc), and the solvent removed $\left(20^{\circ} \mathrm{C}\right.$ and 14 mmHg$)$ to give acridine (18) $(0.12 \mathrm{~g}, 80 \%)$ as buff plates; m.p. $210-213{ }^{\circ} \mathrm{C}$ (Found: C, 91.2; H, 5.7; N, 2.6. $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{~N}$ requires $\mathrm{C}, 91.5 ; \mathrm{H}, 5.7 ; \mathrm{N}, 2.7 \%$); $\mathrm{v}_{\text {max }}\left(\mathrm{CHBr}_{3}\right)$ $2985-2840,1600$, and $760 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.2$ $(2 \mathrm{H}, \mathrm{s}), 7.5(19 \mathrm{H}, \mathrm{m})$, and $2.8(8 \mathrm{H}, \mathrm{s})$.

14-Benzyl-5,6,8,9-tetrahydro-2,7,12-triphenyldibenz[$\mathrm{c}, \mathrm{h}]$ acridinium Trifluoromethanesulphonate (19).-Xanthylium salt (17) $(0.25 \mathrm{~g}, 0.37 \mathrm{mmol})$ was stirred in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($38 \mathrm{mg}, 0.37 \mathrm{mmol}$). n-Benzylamine ($40 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added at $20^{\circ} \mathrm{C}$ followed after 2 h by $\mathrm{AcOH}(0.11 \mathrm{~g}, 1.9 \mathrm{mmol})$. The mixture was stirred for 16 h , solvent allowed to evaporate at $25^{\circ} \mathrm{C}$, and water (10 ml) added. After stirring for 8 h the solid was filtered and dried ($20^{\circ} \mathrm{C}$ and 14 mmHg), affording dibenzacridinium salt (19) $(0.24 \mathrm{~g}, 87 \%)$ as yellow prisms, m.p.

158-161 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 75.2$; $\mathrm{H}, 5.1$; N, 1.6. $\mathrm{C}_{47} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 75.1 ; \mathrm{H}, 4.8 ; \mathrm{N}, 1.9 \%$) $v_{\text {max }}\left(\mathrm{CHBr}_{3}\right) 1610,1595-$ 1560,1275 , and $1265 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.1(2 \mathrm{H}$, s), $7.5(24 \mathrm{H}, \mathrm{m}), 6.2(2 \mathrm{H}, \mathrm{s})$, and $2.6(8 \mathrm{H}, \mathrm{s})$.

5,6,8,9-Tetrahydro-14-(4-methoxyphenyl)-2,7,12-triphenyldibenz[c, h]acridinium Perchlorate (20).-Xanthylium salt (16) $(0.31 \mathrm{~g}, 0.5 \mathrm{mmol})$ was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($51 \mathrm{mg}, 0.5 \mathrm{mmol}$). p-Anisidine ($62 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added at $20^{\circ} \mathrm{C}$ followed after 2 h by $\mathrm{AcOH}(0.15 \mathrm{~g}, 2.5 \mathrm{mmol})$. The mixture was stirred for 16 h , solvent allowed to evaporate at $25{ }^{\circ} \mathrm{C}$, and the residue stirred with water (10 ml) for 4 h . Filtration and drying ($20^{\circ} \mathrm{C}$ and 14 mmHg) gave a solid which was chromatographed in portions of 100 mg (neutral alumina, 15 g per run). Elution with EtOAc (100 ml per run) removed impurities, and subsequent elution with $\mathrm{Me}_{2} \mathrm{CO}(30 \mathrm{ml}$ per run) and combining of those solutions, afforded on evaporation $\left(20^{\circ} \mathrm{C}\right.$ and 20 mmHg$)$ dibenzacridinium salt $(20)(0.26 \mathrm{~g}$, 72%) as cream prisms, m.p. $>300{ }^{\circ} \mathrm{C}$ (Found: C, 76.7 ; H, $5.1 ; \mathrm{N}, 1.9 . \mathrm{C}_{46} \mathrm{H}_{36} \mathrm{ClNO}_{5}$ requires $\mathrm{C}, 76.9 ; \mathrm{H}, 5.1 ; \mathrm{N}, 2.0 \%$); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 2970,1085$, and $760 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ 7.8-6.8 ($25 \mathrm{H}, \mathrm{m}$), $3.9(3 \mathrm{H}, \mathrm{s})$, and $2.9(8 \mathrm{H}, \mathrm{s})$.

4,4'-Bis-(3-methoxycarbonyl-1-oxopropyl)biphenyl (21).Double succinoylation of biphenyl with 3-methoxycarbonylpropionyl chloride was effected as previously reported, ${ }^{15}$ except that AlCl_{3} was added in portions over 30 min to the mixture of biphenyl, acid chloride, and CS_{2}; also, the temperature was allowed to rise from 15 to $45^{\circ} \mathrm{C}$ over 2 h before refluxing for 4 h . Recrystallisation of the crude product from MeOH afforded a sample of diester (21) suitable for the WolffKishner reduction. The diester (21) crystallised as plates, m.p. $136-137.5^{\circ} \mathrm{C}$ (from acetone) (lit., ${ }^{5}{ }^{5} 136.5-137.5^{\circ} \mathrm{C}$) (Found: C, 69.0; H, 5.7. Calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{6}: \mathrm{C}, 69.1 ; \mathrm{H}, 5.8 \%$).

Methyl 4-Biphenyl-4-yl-4-oxobutanoate (22).—An attempt to obtain diester (21) by simpler conditions afforded only the product of monosuccinoylation, ester (22). Thus, anhydrous $\mathrm{AlCl}_{3}(13.4 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added in portions over 40 min to biphenyl ($3.1 \mathrm{~g}, 20 \mathrm{~mol}$) and 3-methoxycarbonylpropionyl chloride ($7.5 \mathrm{~g}, 50 \mathrm{mmol}$) in nitrobenzene $(20 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 2 days, hydrolysed with ice (50 g) and $\mathrm{HCl}(10 \mathrm{~N}, 5 \mathrm{ml})$, and the nitrobenzene removed by steam distillation. The residue solidified on standing to give ester (22) $\left(5.4 \mathrm{~g}, 100 \%\right.$), m.p. $96-99{ }^{\circ} \mathrm{C}$; recrystallisation afforded ester (22), m.p. $99-100{ }^{\circ} \mathrm{C}$ (from MeOH) (lit., ${ }^{26} 101{ }^{\circ} \mathrm{C}$) (Found: C, 76.1; H, 6.0. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.1 ; \mathrm{H}, 6.0 \%$); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1725,1675$, and $765 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.1(2 \mathrm{H}$, $\mathrm{d}, J 8 \mathrm{~Hz}), 7.8-7.4(7 \mathrm{H}, \mathrm{m}), 3.7(3 \mathrm{H}, \mathrm{s}), 3.3(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$, and $2.8(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz})$.
$3,3^{\prime}, 4,4^{\prime}$-Tetrahydro- $\left[7,7^{\prime}\right.$-binaphthalene $]-1(2 \mathrm{H}), 1^{\prime}\left(2^{\prime} \mathrm{H}\right)$ dione (25).-Dicarboxylic acid (24) ($0.50 \mathrm{~g}, 1.53 \mathrm{mmol}$) was stirred in polyphosphoric acid (5 g) at $75^{\circ} \mathrm{C}$ for 45 h . Addition of ice (10 g) and water (20 ml) and extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{ml})$ gave an organic layer which was washed with $\mathrm{Na}_{2} \mathrm{CO}_{3}(60 \mathrm{ml}, 10 \%)$ and water (60 ml), and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of solvent ($70^{\circ} \mathrm{C}$ and 20 mmHg) afforded dione (25) $\left(0.25 \mathrm{~g}, 58 \%\right.$), prisms (from HOAc), m.p. $135-140^{\circ} \mathrm{C}$ (Found: $M^{+}, 290.1311 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $M, 290.1307$); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right)$ $1675 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.2(2 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}), 7.6(2 \mathrm{H}, \mathrm{dd}, J 2$ and 8 Hz$), 7.2(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}), 2.9(4 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 2.6(4 \mathrm{H}, \mathrm{t}$, $J 6 \mathrm{~Hz})$, and $2.1(4 \mathrm{H}, \mathrm{m})$.

3, $3^{\prime}, 4,4^{\prime}$-Tetrahydro-2, 2^{\prime}-bis(phenylmethylene)-[7,7'-bi-
naphthalene]-1(2H), $1^{\prime}\left(2^{\prime} \mathrm{H}\right)$-dione (26).-Dione (25) (0.17 g, $0.6 \mathrm{mmol})$, benzaldehyde ($0.13 \mathrm{~g}, 1.2 \mathrm{mmol}$), and ethanolic $\mathrm{KOH}(4 \% 0.3 \mathrm{ml})$ were stirred at $20^{\circ} \mathrm{C}$ for 3 h . Ethanol (0.5
ml) was added to the residue; filtration afforded the crude product which was chromatographed on alumina ($2 \times 20 \mathrm{~g}$; CHCl_{3}) to afford dione (26) ($0.177 \mathrm{~g}, 63 \%$), prisms, m.p. $235-237{ }^{\circ} \mathrm{C}$ (Found: M^{+}, 466.191. $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{O}_{2}$ requires M, 466.193); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1665 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ $8.4(2 \mathrm{H}, \mathrm{s}), 7.9-7.4(16 \mathrm{H}, \mathrm{m})$, and $3.1(8 \mathrm{H}, \mathrm{s})$.

1, 1^{\prime}-Dichloro-3, $3^{\prime}, 4,4^{\prime}$-tetrahydro-[7,7'-binaphthalene]-2, 2^{\prime} dicarbaldehyde (27).- $\mathrm{POCl}_{3}(1.60 \mathrm{~g}, 10.4 \mathrm{mmol})$ was added over 20 min to a stirred mixture of dimethylformamide (0.76 $\mathrm{g}, 10.4 \mathrm{mmol})$ and trichloroethylene (2 ml) at $5{ }^{\circ} \mathrm{C}$ in a threenecked flask equipped with a CaCl_{2} drying tube. A solution of dione (25) ($1.0 \mathrm{~g}, 3.6 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(2 \mathrm{ml})$ was then added, and the mixture heated at $80^{\circ} \mathrm{C}$ for 14 h . The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-10 \% \mathrm{NaOAc}(1: 1 \mathrm{v} / \mathrm{v}, 100 \mathrm{ml}$) and the organic layer separated and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed ($60^{\circ} \mathrm{C}$ and 20 mmHg) and the residue dissolved $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{ml}\right)$ to give a solution which was chromatographed on neutral alumina (30 g ; CHCl_{3}). After discarding a preliminary small yellow band, the major yellow fraction was collected, and the solvent removed from it ($50{ }^{\circ} \mathrm{C}$ and 20 $\mathrm{mmHg})$ to give dicarbaldehyde (27) $(0.44 \mathrm{~g}, 33 \%)$, pale yellow prisms, m.p. $219-221{ }^{\circ} \mathrm{C}$ (Found: $M^{+}, 382.0515 . \mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Cl}_{2^{-}}$ O_{2} requires $M, 382.0527$); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1665 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right)$ $10.3(2 \mathrm{H}, \mathrm{s}), 8.0(2 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}), 7.6(2 \mathrm{H}, \mathrm{dd}, J 2$ and 7 Hz$)$, $7.3(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$, and $2.8(8 \mathrm{H}, \mathrm{m})$.
$3,3^{\prime}, 4,4^{\prime}-$ Tetrahydro- $\left[7,7^{\prime}\right.$-binaphthalene $]-1(2 \mathrm{H}), 1^{\prime}\left(2 \mathrm{H}^{\prime}\right)$ dione Dioxime (28).-Dione (25) ($0.24 \mathrm{~g}, 0.83 \mathrm{mmol}$), hydroxylamine hydrochloride ($0.23 \mathrm{~g}, 3.3 \mathrm{mmol}$), pyridine (1.1 ml), and ethanol (1.1 ml) were refluxed for 3 h . The solution was allowed to cool to $20^{\circ} \mathrm{C}$ when prisms deposited; filtration and washing with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ gave dioxime (28) (0.205 g , 77%), prisms, m.p. $218-221{ }^{\circ} \mathrm{C}$ (Found: C, $75.1 ; \mathrm{H}, 6.3$; $\mathrm{N}, 8.7 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 6.3 ; \mathrm{N}, 8.7 \%$); $v_{\text {max. }}$ $3250 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 8.1(2 \mathrm{H}, \mathrm{s}), 7.8(2 \mathrm{H}, \mathrm{d}, J 4 \mathrm{~Hz})$, $7.7(2 \mathrm{H}, \mathrm{d}, J 4 \mathrm{~Hz}), 3.5(2 \mathrm{H}, \mathrm{s}), 2.7(8 \mathrm{H}, \mathrm{m})$, and $1.8(4 \mathrm{H}, \mathrm{m})$.

5,6,8,9-Tetrahydro-2,4-diphenyl-1-oxoniadibenz[a,j]anthracene Trifluoromethanesulphonate (37).-Ketone (36) (0.50 g , 2 mmol), chalcone ($0.62 \mathrm{~g}, 3 \mathrm{mmol}$), and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.75 \mathrm{~g}$, 5 mmol) were heated at $100^{\circ} \mathrm{C}$ for 2 h . Trituration of the gum with $\mathrm{Et}_{2} \mathrm{O}(5 \times 20 \mathrm{ml})$ and filtration afforded pyrylium salt (37) $\left(0.80 \mathrm{~g}, 68 \%\right.$), orange prisms, m.p. $250-254^{\circ} \mathrm{C}$ (Found: M^{+}, 436.1811. $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{SO}_{4}-\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}=\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{O}$ requires $M, 436.1827$); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1260$ and $1025 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.4(1 \mathrm{H}, \mathrm{s}), 8.0(3 \mathrm{H}, \mathrm{m}), 7.7-7.2(13 \mathrm{H}$, $\mathrm{m}), 3.1(4 \mathrm{H}, \mathrm{s})$, and $2.9(4 \mathrm{H}, \mathrm{s})$.

5,6,8,9-Tetrahydro-2,4-diphenyl-1-azadibenz[a,j]anthracene (38).-Pyrylium salt (37) ($0.29 \mathrm{~g}, 0.5 \mathrm{mmol}$) was stirred in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{ml})$ and aqueous $\mathrm{NH}_{3}(d 0.88,3 \mathrm{mmol})$ added dropwise followed after 2 h by $\mathrm{AcOH}(0.36 \mathrm{~g}, 6 \mathrm{mmol})$. The mixture was stirred for 16 h , solvent allowed to evaporate at $25^{\circ} \mathrm{C}$, and water (10 ml) added. Filtration and drying $\left(50^{\circ} \mathrm{C}\right)$ gave a residue which was chromatographed on alumina $(20 \mathrm{~g} ; 10 \%$ EtOAc-light petroleum), and the solvent reduced to 3 ml $\left(20{ }^{\circ} \mathrm{C}\right.$ and 14 mmHg$)$ to give a precipitate which was filtered and washed (eluant) to give pyridine (38) $(0.134 \mathrm{~g}, 62 \%)$, prisms, m.p. 200-202 ${ }^{\circ} \mathrm{C}$ (Found: M^{+}, 435.1990. $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{~N}$ requires $M, 435.1987$); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1590,1570$, and 760 $\mathrm{cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.9(1 \mathrm{H}, \mathrm{s}), 8.2-7.7(3 \mathrm{H}, \mathrm{m}), 7.5-6.9(13$ $\mathrm{H}, \mathrm{m})$, and $2.8(8 \mathrm{H}, \mathrm{s})$.

1-n-Butyl-5,6,8,9-tetrahydro-2,4-diphenyl-1-azoniadibenz[a,j]anthracene Trifluoromethanesulphonate (39).-Pyrylium salt (37) $(0.29 \mathrm{~g}, 0.5 \mathrm{mmol})$ was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and $\mathrm{Et}_{3} \mathrm{~N}(51 \mathrm{mg}, 0.5 \mathrm{mmol}) . \mathrm{n}$-Butylamine ($37 \mathrm{mg}, 0.5 \mathrm{mmol}$) was
added at $20^{\circ} \mathrm{C}$ followed after 2 h by $\mathrm{AcOH}(0.15 \mathrm{~g}, 2.5 \mathrm{mmol})$. The mixture was stirred for 16 h , solvent allowed to evaporate at $25^{\circ} \mathrm{C}$, and water (10 ml) added. After stirring for 8 h the precipitate was filtered, dried, and chromatographed on alumina in two portions $(2 \times 15 \mathrm{~g}$; EtOAc eluted a golden yellow impurity; then $\mathrm{Me}_{2} \mathrm{CO}$ eluted a bright yellow band). Removal of $\mathrm{Me}_{2} \mathrm{CO}\left(20^{\circ} \mathrm{C}\right.$ and 14 mmHg$)$, treatment of the residue with water, filtration and drying ($40^{\circ} \mathrm{C}$ and 14 mmHg) gave pyridinium salt (39) $(0.229 \mathrm{~g}, 71 \%)$ as yellow prisms, m.p. 130-134 ${ }^{\circ} \mathrm{C}$ (Found: C, 71.1; H, 5.4; N, 2.2. $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 71.1 ; \mathrm{H}, 5.3 ; \mathrm{N}, 2.2 \%$) $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right) 1260$ and $1025 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 8.3(1 \mathrm{H}, \mathrm{s}), 7.9-7.1(16 \mathrm{H}, \mathrm{m}), 5.0$ $(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}), 2.9(8 \mathrm{H}, \mathrm{s}), 1.3(2 \mathrm{H}, \mathrm{m})$, and $1.0-0.3(5 \mathrm{H}$, m).

5,6,8,9,11,12,14,15-Octahydro-10-phenyl-21-oxoniabenzo-[a]phenanthro[2,3-o]pentaphene Trifluoromethanesulphonate (41).-Ketone (36) ($122 \mathrm{mg}, 0.5 \mathrm{mmol}$), ketone (40) (162 mg , $0.5 \mathrm{mmol})$, and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.15 \mathrm{~g}, 1 \mathrm{mmol})$ were heated at $100^{\circ} \mathrm{C}$ for 2.5 h . Trituration of the gum with $\mathrm{Et}_{2} \mathrm{O}(5 \times 10 \mathrm{ml})$ and filtration afforded pyrylium salt (41) ($204 \mathrm{mg}, 57 \%$) as orange prisms, m.p. $>300{ }^{\circ} \mathrm{C}$ (Found: C, 73.8; H, 4.7; S, 4.5. $\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 73.9 ; \mathrm{H}, 4.7 ; \mathrm{S}, 4.5 \%$); $v_{\text {max. }}$ $\left(\mathrm{CHBr}_{3}\right) 1275$ and $1260 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.5(2 \mathrm{H}$, s), $7.9-7.2(15 \mathrm{H}, \mathrm{m})$, and $3.0(16 \mathrm{H}, \mathrm{m})$.

5,6,8,9,11,12,14,15-Octahydro-10-phenyl-21-azabenzo[a]-phenanthro[2,3-o]pentaphene (42).-Pyrylium salt (41) (150 $\mathrm{mg}, 0.21 \mathrm{mmol}$) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and aqueous $\mathrm{NH}_{3}(d 0.88 ; 1 \mathrm{mmol})$ added dropwise, followed after 1 h at $20^{\circ} \mathrm{C}$ by $\mathrm{AcOH}(0.12 \mathrm{~g}, 2 \mathrm{mmol})$. The mixture was stirred for 16 h , solvent allowed to evaporate at $25^{\circ} \mathrm{C}$, and water $(10 \mathrm{ml})$ added. Filtration and drying $\left(50^{\circ} \mathrm{C}\right)$ gave a residue which was chromatographed on alumina ($15 \mathrm{~g} ; 10 \%$ EtOAclight petroleum), and the solvent reduced to $3 \mathrm{ml}\left(20^{\circ} \mathrm{C}\right.$ and $14 \mathrm{mmHg})$ to give, after filtration, pyridine (42) ($69 \mathrm{mg}, 58 \%$), prisms, m.p. $287-290{ }^{\circ} \mathrm{C}$ (Found: M^{+}, 563.2577. $\mathrm{C}_{43} \mathrm{H}_{33} \mathrm{~N}$ requires $M, 563.2613$); $v_{\max }\left(\mathrm{CHBr}_{3}\right) 3060-2830,1540$, 1485,910 , and $770 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 9.0(2 \mathrm{H}, \mathrm{s}), 8.0(2 \mathrm{H}, \mathrm{dd}$, $J 1$ and 6 Hz$), 7.2(13 \mathrm{H}, \mathrm{m})$, and $2.9(16 \mathrm{H}, \mathrm{m})$.

21-n-Butyl-5,6,8,9,11,12,14,15-octahydro-10-phenyl-21-azoniabenzo[a]phenanthro[2,3-o]pentaphene Trifluoromethanesulphonate (43).- $\mathrm{Ac}_{2} \mathrm{O}$ ($56 \mathrm{mg}, 0.54 \mathrm{mmol}$), pyrylium salt (41) $(0.20 \mathrm{~g}, 0.27 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~g}, 1.4$ mmol) were refluxed for 1.5 h . After 30 min , dry EtOH (38 $\mathrm{mg}, 0.82 \mathrm{mmol})$, and after 1 h n -butylamine ($20 \mathrm{mg}, 0.27$ mmol) were added. After cooling to $20^{\circ} \mathrm{C}$, dry $\mathrm{AcOH}(82$ $\mathrm{mg}, 1.4 \mathrm{mmol}$) was added followed after 1 week by saturated aqueous sodium hydrogencarbonate (10 ml). The precipitate was filtered, dried ($40^{\circ} \mathrm{C}$), and chromatographed on alumina (15 g ; EtOAc removed impurities and then $\mathrm{Me}_{2} \mathrm{CO}$ eluted a yellow band). Removal of $\mathrm{Me}_{2} \mathrm{CO}\left(20{ }^{\circ} \mathrm{C}\right.$ and 14 mmHg$)$, standing in water, filtration and drying ($40^{\circ} \mathrm{C}$ and 14 mmHg) gave pyridinium salt $(43)(0.11 \mathrm{~g}, 52 \%)$ as orange-yellow prisms m.p. $148-152{ }^{\circ} \mathrm{C}$ (Found: C, 74.7; H, 5.6; N, 1.9. $\mathrm{C}_{48} \mathrm{H}_{42^{-}}$ $\mathrm{F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ requires C, $74.9 ; \mathrm{H}, 5.5 ; \mathrm{N}, 1.8 \%$); $v_{\text {max. }}\left(\mathrm{CHBr}_{3}\right)$ $1265 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 8.4(2 \mathrm{H}, \mathrm{s}), 8.0-7.2(15 \mathrm{H}, \mathrm{m}), 5.4$ $(2 \mathrm{H}, \mathrm{m}), 2.9-1.9(18 \mathrm{H}, \mathrm{m}), 1.2(2 \mathrm{H}, \mathrm{s})$, and $0.54(3 \mathrm{H}, \mathrm{t}$, $J 4 \mathrm{~Hz}$).

Kinetic Measurements.-Kinetic measurements were carried out under pseudo-first-order conditions, at a substrate concentration of $c a .10^{-5} \mathrm{~mol} \mathrm{l}^{-1}$, nucleophile concentration $c a$. $10^{-3}-10^{-4} \mathrm{~mol} \mathrm{l}^{-1}$ unless otherwise stated. Reactions were followed by u.v. spectrophotometry, monitoring the decrease in substrate absorbance.

Reactions at $100{ }^{\circ} \mathrm{C}$ were carried out in thermostatically controlled heating blocks, identical sample tubes being withdrawn at known times, and cooled in ice before measurement. Reactions at $60^{\circ} \mathrm{C}$ were followed in the cell compartment of a Pye-Unicam SP8-200 u.v. spectrophotometer. Both devices maintain the temperature within $\pm 0.1^{\circ} \mathrm{C}$.
Pseudo-first-order rate constants were obtained from plots of $\ln [a /(a-x)]=\ln \left[\left(\varepsilon_{1}-\varepsilon_{2}\right) /\left(\varepsilon-\varepsilon_{2}\right)\right]$ versus time. Plots were linear to $>60 \%$ completion. First- and second-order rate constants k_{1} and k_{2} were obtained from plots of $k_{\text {obs. }}$ versus nucleophile concentration. ${ }^{27}$ For definitions and calculation of errors and for estimation of the precision of $k_{\text {obs. }}$ see ref. 28.

Acknowledgements

We thank the S.R.C. for a studentship (to C. M. M.), and Mr. Y. X. Ou for help with the kinetic measurements.

References

1 Part 12, A. R. Katritzky, Y. X. Ou, and G. Musumarra, preceding paper.
2 Part of Ph.D. Thesis of C. M. Marson, University of East Anglia, 1982, for which see for further details.
3 A. R. Katritzky, Tetrahedron, 1980, 36, 679.
4 A. R. Katritzky, C. M. Marson, S. S. Thind, and J. Ellison, J. Chem. Soc., Perkin Trans. 1, 1983, 487.

5 A. R. Katritzky, G. Musumarra, and K. Sakizadeh, Tetrahedron Lett., 1980, 21, 2701.
6 A. R. Katritzky, A. Saba, and R. C. Patel, J. Chem. Soc., Perkin Trans. I, 1981, 1492.
7 A. R. Katritzky and S. S. Thind, J. Chem. Soc., Perkin Trans. 1, 1980, 1895.
8 A. R. Katritzky, A. M. El-Mowafy, G. Musumarra, K. Sakizadeh, C. Sana-Ullah, S. M. M. El-Shafie, and S. S. Thind, J. Org. Chem., 1981, 46, 3823.
9 A. R. Katritzky, J. Adamson, E. M. Elisseou, G. Musumarra, R. C. Patel, K. Sakizadeh, and W. K. Yeung, J. Chem. Soc., Perkin Trans. 2, 1982, 1041.
10 A. R. Katritzky, J. Z. Brzezinski, Y. X. Ou, and G. Musumarra, following paper.
11 E. Bergman, E. Bograchov, and M. Weizmann, Chem. and Ind., 1940, 402.
12 Huang-Minlon, J. Am. Chem. Soc., 1946, 68, 2487.
13 A. K. Fateen and M. M. Ali, Indian J. Chem., 1972, 10, 968.
14 A. R. Katritzky, E. Lunt, and Z. Zakaria, J. Chem. Soc., Perkin Trans. 1, 1980, 1879.
15 D. R. Gildersleve and M. S. Tute, Belg. P., 670 862/1966.
16 J. Koo, J. Am. Chem. Soc., 1953, 75, 1891.
17 A. R. Katritzky and C. M. Marson, J. Am. Chem. Soc., 1983, 105, 3279.
18 M. Weiss, J. Am. Chem. Soc., 1952, 74, 200.
19 A. Burger and E. Mosettig, J. Am. Chem. Soc., 1937, 59, 1302.
20 E. Buchta and F. Güllich, Chem. Ber., 1959, 92, 916.
21 L. F. Fieser and W. S. Johnson, J. Am. Chem. Soc., 1940, 62, 575.

22 N. P. Buu-Hoi and G. Saint-Ruf, J. Chem. Soc., 1965, 2642.
23 J. Cason, Org. Synth., 1960, 33, 169.
24 L. F. Fieser and W. S. Johnson, J. Am. Chem. Soc., 1939, 61, 168.

25 J. Nickl, H. Teufel, E. Seeger, and W. Engel, Ger. Offen., 2,112,840/1972.
26 T. Shichita, K. Yoshikawa, K. Takashima, J. Himizu, T. Takada, and K. Tsuzurahara, Jpn. Kokai., 1974, 42, 631.
27 Cf. A. Ceccon, I. Papa, and A. Fava, J. Am. Chem. Soc., 1966, 88, 4643.
28 A. R. Katritzky, Y. X. Ou, J. Ellison, and G. Musumarra, 1983, 1421.

